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Asymmetric Attractive Particle Systems on Z: 
Hydrodynamic Limit for Monotone 
Initial Profiles 
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We extend previous results on the preservation of local equilibrium for one- 
dimensional asymmetric attractive particle systems. The hydrodynamic behavior 
is studied for general monotone initial profiles. 
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1. I N T R O D U C T I O N  

The hydrodynamic behavior of interacting particle systems has been 
investigated by many authors. The situation is quite well understood for 
diffusive systems, but otherwise the results are still very partial. One impor- 
tant tool in this investigation has been at tract iveness ,  a property shared by 
systems such as the simple exclusion process (SEP) and the zero-range 
process (ZRP). They both describe the evolution of infinitely many 
indistinguishable particles which jump on the sites of Z according to a 
translation-invariant probability p ( x ,  y )  = p ( y  - x) ,  following the exclusion 
rule (i.e., suppressing jumps on already occupied sites) for the SEP, and 
leaving a site with a rate which depends on the total number of particles 
at that site, for the ZRP. The extremal measures among those which are 
translation invariant, besides being invariant for one such process, form a 
one-parameter family of product measures, characterized by the particle 
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density per site, and which we denote by (V~)o_<a< +oo [or (Va)o,<~_<~, for 
the SEP]. (1'16'17) 

In the nondiffusive case [e.g., when p(.)  has a nonzero first moment],  
the hydrodynamic equation should be obtained under Euler scaling and 
it should be a (generally) nonlinear conservation law. This derivation, 
involving the proof of preservation of local equilibrium, has been obtained 
by several authors when the initial law is a product measure which agrees 
with some v a at the left of the origin and some v b at its right, i.e., when the 
initial density profile is a one-step function, or when the initial density 
profile is strictly monotone and will develop no shocks. We refer to 
refs. 3-6, 17, and 19 for these results obtained through different methods: 
in refs. 3, 4, 17, and 19 an explicit computation leads to the density profile; 
in refs. 5 and 6 the latter is obtained as the unique entropy solution to the 
hydrodynamic equation. In this paper, we combine these two approaches 
to extend the result to general monotonic initial conditions, as was conjec- 
tured in ref. 4, and announced in ref. 10. 

The main tools of our proof are basic coupling, attractiveness of the 
processes, and the properties of entropy solutions to the hydrodynamic 
equations. First, we show how to reduce the problem to initial density 
profiles which are step functions and then we concentrate on such cases. 

Since our main result (the conjecture 2.7 of ref. 4) concerns situations 
where shocks are developed, we must clarify that we do not say anything 
about the behavior at discontinuity points. Results about this exist in very 
particular cases(2's'~2'22); they show loss of local equilibrium and also give 
the microscopic structure at the shock. Extensions to the multidimensional 
cases should be possible, and a first step has been obtained in refs. 14 
and 15. For the particular case of nearest-neighbor asymmetric simple 
exclusion there are stronger results, based on the properties of second-class 
particles. (9) 

2. PRELIMINARIES A N D  NOTATIONS 

We study a class of Markov processes (t/t),~> o called the "Misan- 
thropes." They were introduced in ref. 7, and one such process is con- 
structed on a suitable subset E of X=-N z. We denote by (S,)t~>o its semi- 
group, which is strongly continuous on the space cg of bounded continuous 
functions on E. Its infinitesimal generator L applied to a bounded cylinder 
function f (i.e., f depends on finitely many coordinates) gives (7) 

Lf(tl) = ~ b(tl(u), ~l(v)) p(u, v)[ f ( t / " '~) - f ( t / ) ]  (2.1) 
u , v ~  Z 
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where 

t/u'V(x) = t/(u) - 1 if x = u 

= r/(v) + 1 if x = v  

= r/(x) if x r  

provided t/(u)>~ 1 and u#-v; otherwise r/u'~=r/. We make the following 
assumptions. 

Assumpt ions  2.1. 

(a) b : N x N ~ l - 0 ,  +oo)  is bounded, b(0, . ) - 0 ,  b(1, j ) > 0  for all j, 
b(., j )  is increasing for each j, and b(i,. ) is decreasing for each i. 

(b) b(i, j)/b(i+ 1, j -  1) = b(i, 0) b(1, j)/b(i+ 1, 0) b(l, j -  1) for all 
i~> 1, j~> 1; b( i , j ) -b ( j ,  i)=b(i, 0 ) - b ( j ,  0) for all i~>0, j~>0. 

(c) In this paper we also suppose p(u, v ) = p ( v - u )  for all v, u, 
where p(u)>~O, ~2~p(u )= l ,  Xu]u]p(u)<+oo, and 7 =  ~f 
Zu ~ z up(u) ~ (0, + oo ). To avoid uninteresting complications we 
also assume that p( . , .  ) is irreducible. Some examples we want to 
include are: 

(i) Zero-range process (ZRP): b(i,j)= g(i) with g bounded, 
nondecreasing, and such that 0 = g ( 0 ) <  g(1), and 
E =  NZ.( 1 ) 

(ii) Simple exclusion process (SEP): b(i, O) = i/x 1, b(i, j )  = 0 if 
j~> 1. In this case it is more natural to restrict the state 
space to E =  {0, 1 }z.(17) Obviously Assumption 2.1a is not 
satisfied, but since the characterization of invariant 
measures is known, this case can be included. Thus we shall 
call Assumptions 2.1' when besides the cases covered by 
Assumptions 2.1, we include the SEP, taking E =  {0, 1 }z. 

R e m a r k  2.2. Under Assumptions 2.1 we can always take E =  N z. 
Nevertheless if, for example, in the ZRP we substitute the assumption of g 
bounded by s u p k ( g ( k + l ) - g ( k ) ) <  +o% then we need to restrict the 
space E of allowed configurations, in order to construct a strongly con- 
tinuous Markov semigroup. Doing this, as in ref. 1, our results still apply. 

If x e Z  we denote by zx the shift operator acting on X by 
~x~(y)=~(y+x)  for each y ~ Z ;  it acts on cg by r~ f ( t / )= f (zx t / ) ,  and on 
the space ~ of probability measures on X by f f d ( z ~ # ) = ~  (z~f)d# for 
g e ~ ,  f e e ( .  For  # E N  we denote by S,# the law of r/, when ~/o is dis- 
tributed according to #, i.e., ~ fd (S ,# )=~  S, fd# .  Let J ( Y )  be the set of 
those # a ~ that are (S,), [(z~)~ respectively]-invariant. Then, the extremal 
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elements of J c ~ 5  ~ form a one-parameter family of product measures 
(va)~l. They are characterized by a = S r/(0)v~(dq) and 

v"(r/(0) = n + 1) v~(q(0) = 1) b(1, n) 

v~(,(0) = n) v~ = 0) b( ,  + 1, 0) 
(2.2) 

and under (a)-(c) above I =  [0, + oo). Nevertheless, since for SEP we have 
restricted the state space to {0, 1} z we have I =  [0, 1] in this case. 

Let us define 

h(a) = ~, up(O, u) f b(t/(0), q(u)) dv"(tl) 
u ~ Z  

which represents the flow of particles through any given site, under P~,. 
(Here if / ~ ,  P ,  denotes the law of (r/t)t>~o on the canonical space 
D([0,  + oe), E) when r/o is distributed according to/~.) It can be checked 
that h is continuous and we shall also assume: 

A s s u m p t i o n  2.3. h is concave and continuously differentiable. 

Recall that: 

(i) For the ZRP, h(a) = 7 ~ g(q(0)) dv a, and 

va(tl(O)=k)=z~lq)(a)k/g(1)...g(k) if k>>.l 

=Z~ -~ if k = 0  

with ~o(a) = S g(r/(0)) va(dtl) and Z~ is a normalizing constant. For example, 
if g(k)=~(k>~l), corresponding to a queuing system, we have h (a )=  
? a ( l + a )  - 1 , 0 ~ < a <  +oo. 

(ii) For  the SEP, h(a) = ?a(1 - a) with 0 ~< a ~< 1. 
For  the construction and basic properties we refer to refs. 1, 7, 16, 

and 17. 
We now recall the essential property of attractiveness (or mono- 

tonicity). The space X is endowed with the partial order q ~< ~ if t/(u) ~< ~(u) 
for all u. This induces the stochastic order on N: #~ ~< #2 if there exists a 
probability measure fi on X x X  with f i (AxX)=tzl (A)  and /~ (XxA)=  
#2(A) for all A ~ ~(X),  and/i{(t/ ,  3): r/~< 3} = 1. 

The assumptions on b( - , . )  imply that if #1 ~< #2, then S,#~ ~< S,#2 for 
all t ~>0. This monotonicity property is an essential tool for our proofs. 
Moreover, we shall use monotonicity when we employ the basic coupling, 
i.e., the construction on the same probability space of versions of the process, 
starting from several arbitrary configurations, in such a way that particles 
of the coupled processes evolve together as much as possible. Throughout  
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this paper we denote with an overbar all that concerns a coupled process. 
Thus, if we couple (q~) and (~)  such that t/0 ~< ~0 we shall have a process 
(~ ,  (~) with 0, ~< (,  for all t, and we shall say that (~t) is an upper bound 
for (r/,). See refs. 1, 7, and 17 for details on coupling techniques. 

Note that v ~ ~< v b for a ~< b. 

Notation. The only convergence in ~ which we shall use is the 
w*-convergence 

v,, W*, v.~ f f dvn ~ f f dv 

for every bounded cylinder function f.  If x ~ R, Ix ]  denotes the integer part 
ofx.  

3. M A I N  R E S U L T  

Our main result is the following: 

T h e o r e m  3.1. Let P0: R ~ I be increasing, bounded, and piecewise 
continuous, and for ~ > 0 le t /~  be the product measure such that 

/z~(t/(k) = m) = vP~ = m) (3.1) 

for m s  N (mE {0, 1} for the SEP) and k ~ Z .  Let p(-, .) be the entropy 
solution on R x [0, + oe) of 

c3tP + ~xh(p)=O 
(3.2) 

p(.,  0) = po(.) 

Under Assumptions 2.1' and 2.3 we have 

lira ~Ex~ 1~S,~ , / ~ = v  p(x'') (3.3) 
e ~ 0  

at all (x, t) continuity points of p(. ,  -). 

From here on we will make Assumptions 2.1' and 2.3. 

Remarks  3.2. 

(i) Since h is concave, p(.,  .) is the unique generalized solution of 
Eq. (3.2) such that for every t > 0 ,  p(.,  t) has only increasing jumps. We 
refer to refs. 5, 10, 13, and 20 for a summary on the entropy condition. 

(ii) As we mentioned in the introduction, the particular case of 
Theorem 3.1, when po(x) = aI(o~,0)(x) + blEo.+~)(x) with 0 < a < b, has 
been proven in ref. 4. It has also been treated in ref. 6 with an independent 
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and different method. But before these, the SEP was first studied in ref. 19 
for p ( 1 ) =  1, a = l ,  b = 0 ;  then in ref. 17 with 7 >0 ,  a = l ,  b = 0 .  In ref. 5 
the case p ( 1 ) + p ( - 1 ) = l  is treated; in refs. 3 and 22 the ZRP with 
g(k)=~(k>~ 1), p ( 1 ) =  1, and any a, b~>0 was treated. 

(iii) Ref. 3 treats also the case when P0(') is bounded, strictly 
decreasing, and of class C1; this has been extended in ref. 4 to the 
models considered here, provided h(.) is strictly concave. The situation of 
decreasing Po is simpler, and local equilibrium is preserved everywhere. 
From what we shall do in this section the reader will easily verify that 
we may extend the above result to any P0(') bounded decreasing and 
piecewise continuous, when h is strictly concave. (See also Section 5.) 

When po(x)=aI(oo ,o3(x)+bI(o ,+~)(x)  the measure kt~ does not 
depend on e, and we denote it by v a'b. Let us now recall the result for this 
case, since we shall make intensive use of it in this section. 

T h e o r e m  3.3. The conclusion of Theorem 3.1 holds for one-step 
initial profiles, that is: 

(a) If a < b and h is concave 

limzEx ~ qSt~-~va'b=~ v~ if x<v~.t  
~ o  (v b if x > v c t  

where Vc = (h(b) - h(a))/(b - a). 

(b) If a > b and h is strictly concave 

I v ~ if x ~ t h ' ( a )  

lim Z~x, 1ISle -l'~a'b= v(h') I(x/l) if th'(a)<.x<~th'(b) 
~ o  ~v b if x >-,/th'(b) 

This theorem has been proven by Andjel and Vares, (4/making essen- 
tial use of the attractiveness. Another proof has been presented by Benassi 
and Fouque (5'6~ [A.B. and J.P.F. take the present opportunity to say that 
there is an error in their use of the subadditive ergodic theorem (ref. 5, 
Proposition 1); they are working on its correction. Therefore we rely on 
ref. 4 for Theorem 3.3 above]. 

We are mainly concerned in extending part (a) of Theorem 3.3. Thus, 
we assume from now on that h is concave. To reduce the problem to initial 
profiles which are step functions we use some techniques in refs. 5 and 6, 
based on the properties of the entropy solution to Eq. 3.2. This is the 
content of Lemma 3.5 below. Before stating it we make the following. 
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D e f i n i t i o n  3 .4 .  We say that  Po is a step function if there exist 
n/> 1, x~ < . . .  < x~, ca,..., c,  such that  

n--I  

Po = CoI(-o~,x~] + ~ ciI(x~,x~,~3 + cnI(x,,,+~) 
i=1 

If c~r 1 for all i e  {0,..., n -  1}, Po is said to be an n-step function. 

k e m m a  3.5.  Assume (3.3) holds for any Po increasing step function. 
Then  Theo rem 3.1 follows. 

Proof. Let us first r emark  that  it suffices to consider Po as in 
Theo rem3 .1  and for which we can find R > 0  such that  p 0 ( x ) =  
p o ( ( - R  v x ) A  R)  for all x ~ R .  Indeed, given Po as in Theorem 3.1 and 
R > 0  we m a y  take Po, e,  Po, R as in Theorem 3.1 and such that: (i) po, e~< 
[O~#O,R everywhere;  (ii) po, e ( x ) = p o ( x ) = # o , R ( x  ) for I x l < R ;  (iii) 
po, R(x)=Po,  ic((- -R v x)  A R), ~O,R(X)=#O,R((--R V X) A R)  for a l lx .  

Let #~,R(#~,R) be the measure  defined as /~ but with Po replaced by 
Po, e (Po, R respectively). Then  #~.R ~< #~ ~< #~,R and the attractiveness implies 
that  for each (x, t) 

On  the other  hand,  due to the hyperbolici ty of Eq. (3.2) [h ' ( - )  is 
bounded  in any bounded  interval] ,  if t > 0 and K ~  R is a bounded  inter- 
val, we can take R > 0 large enough so that  pR(x, t) = p(x, t) = #R(x, t) for 
x ~ K, where PR, P, and PR denote the en t ropy  solution to Eq. (3.2) with 
initial condit ions Po, R, Po, and Po, e, respectively. (See, e.g., Theorem 1 of 
w in ref. 13 or the references therein for the one-dimensional  case.) 

Now,  for Po satisfying the above extra condition, we can take two 
sequences of increasing step functions (c~,), >i 1, (/~,,)~/> ~ such that  

c~,(x) <~ po(X) <. f t , (x)  for all x, all n > 1 (3.4a) 

c~,(x) increases in n, /~,(x) decreases in n, for each x (3.4b) 

fR(~,( x ) - - ~ , ( x ) ) d x  "~ 0 as n-- .  +oo (3.4c) 

Let  en(x, 
c~,,(., 0) = ~ , ( .  ) 
measure  such that  /z~,n(r/(x ) = k) = v=n(~x)(t/(0) = k) (#~,,,(t/(x) = k) = 
va"(~)(rl(O) = k), respectively) for all x e Z, k e N. Thus,  #,,,, ~< #~ ~< fi .... and 
at tract iveness implies 

"~[X8 - I ]  Ste-l['~,n ~ ~'[x8 1] St8 1~: ~ ~'[x~-I] St~-[#~,n (3.5) 

t) (ft ,(x, t)) be the en t ropy  solution to Eq. (3.2) when 
( = f t , ( - ) ,  respectively), and let #~,n(#~,n) be the product  

for each x E R, t >~ 0, and n ~> 1. 
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According to monotonicity properties and a priori estimates for 
entropy solution (13) we also have 

c~,(x, t)<~ p(x, t)<~ ~ ( x ,  t) for all x, t (3.6a) 

where p(x, t) is the entropy solution to Eq. (3.2), starting from Po and 

f (/Ux, t) - ~n(x, t)) clx <~ fI~ (~.(x) - ~.(x)) dx (3.6b) 

Moreover, h being concave, %(., t), p(-, t), and ft,(-, t) are increasing, 
for each t > 0. 

From (3.6) we then get that if x is a continuity point of p(., t) we must 
have 

lira lira {/n(Y, t) = p(x, t) = lim lim %(y, t) (3.7) 
n ~  +co y S x  n ~  +oo y T x  

(3.5), (3.7), and the assumption of the lemma imply that (3.3) holds for Po. 

R e m a r k  3.6. If Po were measurable, of bounded variation, and 
piecewise continuous, we could still approximate it by step functions 
satisfying (3.4). Equations (3.5) and (3.6) continue to hold, and since h is 
concave, entropy solutions to Eq. (3.2) have only positive jumps. We then 
easily obtain (3.7). Thus, the lemma can be extended to these functions, 
and our reason for stating it for increasing functions is simply that we do 
not have a proof of (3.3) for general step functions. (See Section 5.) 

4. THE CASE OF Po I N C R E A S I N G  STEP F U N C T I O N  

Proposition 4.1. Let po=a~(_~.oj+C~(o,~j+b~(~,+~_~ with 
0 ~ < a < c < b  (~<1 in the case of SEP). Assume ( h ( c ) - h ( a ) ) / ( c - a ) >  
( h ( b ) - h ( c ) ) / ( b -  c), and let x*, t*, xl be defined by 

Then: 

_ h ( b ) - h ( a )  c t + t . h ( b ) - h ( c )  t . h ( c ) - h ( a )  x . = x l + t .  
b - c  c - a  b - a  

(a) For t < t*, (3.3) holds with 

p(x, t) = a~( . . . .  (,))(x) + c~ r + b ~ (y(~>, +,~)(x) 

for x~  {x(t), y(t)}, where 

x(t)  = t(h(c) - h(a))/(e - a), y(t)  =- ~ + t(h(b) - h(c))/(b - c) 



Asymmetric Attractive Particle Systems 727 

(b) 

where 

For  t~> t*, (3.3) holds with 

p(x ,  t) = a~ ( ~,z .~)(x)  + b ~ (~(~. + ~ ) (x )  for 

z(t) = x~ + t(h(b) - h(a))/(b - a) 

x - #  z ( t )  

Remarks 4.2. 

(a) Since h is concave, we always have (h(c) -h(a) ) / (c -a)>~ 
( h ( b ) - h ( c ) ) / ( b - c ) .  The case of equality presents no difficulty: the 
monotonicity argument we shall use in the case of t <  t* is enough to 
conclude that the same result applies to all t > 0. 

(b) For  the ZRP with g(k) = ~(k >1 1), t* is defined by 
c~+ t*~(1 + c )  -~ (1 + b ) - ~  = t*7(l + a )  -~ (1 +c) -~ .  

(c) For  the SEP, t* is defined by c ~ + t * 7 ( 1 - b - c ) = t * V ( 1 - a - c ) .  

(d) Proposition 4.1b and Theorem 3.3 imply that if t>~t* and 
x r z(t), then 

lim r[x~-qS~-l~ Exl~ 1]v~'b=lim r[x~ qS,~-ltZ~ 
e ~ O  e ~ O  

for Po as above. 

Let/7~ be a coupling of r/ with law p~ and 0 with law r ~1~ 11 v~'b in 
such a way that 

G{(q,q):~(x)=q(x) for x~<0 or x > [ ~ e  -13 

q(x)<.~(x) for O~x<<.[x~e -~] 

q(x)<<.q(x) for [Xle-1]<x<~[c~e 1 ] } = 1  (4.1) 

This coupling satisfies the following "density balance relation": 

~Xl~: 1] _u 09 

f ~ ( r / ( x ) -q (x ) )  + dfq= f ~ (q ( x ) -q ( x ) )  + dfi~ (4.2) 
x = - o v  x = E x l ~  1 1 + 1  

The proof of Proposition 4.1 will be done in three steps: t < t*, t = t*, 
and finally t > t*. 

Proof of  Proposition 4.1. Case t < t*. We have v a,c~<~t~< 
_ f~-i I v c'b and z_ E~ 11 va'b ~ / ~  ~ v~'b. From this, the attractiveness of the 

process, and Theorem 3.3, for any fixed t~ (0, t*) we have: 

(i) I f x ( t ) < x < y ( t ) ,  then l im~orEx  ~ qS,~-1#~=r 
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(ii) If x < t (h(b)  - h (a) ) / (b  - a), then lim~ ~ o r [x~ ~1S,~ ~ = v< 

(iii) If  x > c~ + t (h(b)  - h (a) ) / (b  - a), then lim~_.o rE~_~]St~ 1#~ = v b. 

However ,  this first a rgument  is not  enough, since it does not  give the 
hydrodynamic  limit for t ( h ( b ) -  h ( a ) ) / ( b -  a) < x < x ( t )  and for y ( t )  < 
x < a +  t ( h ( b ) - h ( a ) ) / ( b - a ) .  F r o m  the at tract iveness we have that  
{z[~-~]St~-~#~}x,,.~ is e)*-compact ,  and, moreover ,  the measures  
r[x~-~]S,~-~p~ are stochastically increasing in x. Thus,  it suffices to control  
the density of  particles ( L e m m a  4.3 below) to conclude the p roof  for t < t*. 
(The details are the same as in Propos i t ion  3.5 of ref. 4.) 

Lemma 4.3. 

(a) 

(b) 

Let  t* be as in Propos i t ion  4.1. If  0 <  t <  t* we have: 

There exist x, y such that  y < x ( t ) <  x < y( t ) ,  and 
[x~ -~] 

f e ~ tl(z) d(S,~ l # ~ ) = ( x - x ( t ) ) c  + ( x ( t ) -  y ) a  lira 
~ 0  z=[ye ~] 

There exist x, y such that  x ( t )  < x < y ( t )  < y and 

l y e  - 1  ] 

lira f e ~ tl(z) d(S,~ ~ l ~ j = ( y -  y ( t ) ) b + ( y ( t ) - x ) c  
e ~ O  z=[xe_~] 

Proof .  We only prove  (a), since (b) is analogous.  There are three 
cases to be considered: 

1. 0 < (h(b)  - h (c ) ) / (b  - e) < (h(c) - h (a) ) / (c  - a) 

2. (h(b)  - h(c) ) / (b  - c) < 0 < (h(e)  - h (a) ) / (e  - a) 

3. (h(b)  - h (c ) ) / (b  - c) < (h(c)  - h (a) ) / (c  - a) < 0 

Let A = {(x, s ) : x ( s ) < x <  y(s) ,  0 < s <  t*}. 

Case 2 (this is the simplest case). Take  y < 0 A t (h(b)  - h ( a ) ) / ( b -  a) 
so that  l i m ~  o ~Ey~_l]Ss~_l#, = v a for each sE [0, t].  Not ice  that  in this case 
(x, t ) ~ A  implies (x, s ) ~ A  for any s ~  (0, t].  We fix x so that  (x, t ) E A .  
Then 

z =  [y~-l] 

z = [ y e - 1 ]  
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From (i) and (ii) above, (2.1), and Assumption 2.1c, we get 

l i m f L ( E ~  q ) ~(z) d ( S , ~ - , ~ ) = h ( a ) - h ( c )  
a-~O ,,z= [y _t] 

for any s~(O, t]. Using Assumption 2.1c and that va<~,u~<~v b, we may 
apply the dominated convergence theorem in Eq. (4.3) to conclude that 

~(z)) d(St~ 11~)= x c -  ya + t (h(a) -  h(c)) a~u ~ 
z ~  lye ~  ] / 

= (x - x ( t ) k  + ( x ( t ) -  y )a  

which proves case 2. 

Case 1. Let t~ < t 2 <  . . -  be defined recursively by x(h  )=~, 
x( t~+l)=y(tn)  for n~> 1, so that t, 'rt* as nl" +oo. For t<<.t~ the argument 
of case 2 can be applied, yielding that for y < 0/x t (h (b) -  h(a)) / (b-  a) and 
x(t) <~ x <~ c~ we have 

l i m f L (  Ex~ I~ ) ~(n  d(Ss~ l~)=h(a)-h(c)  
~ 0  ,,z=Eye_~] 

for any s e  (0, t). Using (2.1) and the dominated convergence theorem we 
conclude that for t ~< tl 

[XS_I] 

f e y, lim 
a ~ O  z = [ y  _l]  

q(z)) d(S,~ 1#~) = ( x -  x(t))c + (x(t) - y)a 

Now let us assume part  (a) of the Lemma, for t ~< tn. If t, < t ~< t, + ~, 
we write 

[xe_t] ) 

z= lye 1] 

= f  ~ E ]I(7-) d(Stne-l/Ae) 
z= [ye 1] 

Now, if we take y as before and x such that 

t, + ~(h(c) - h(a))/(c - a) <~ x <~ a + tn(h(b ) - h(a))/(b - a) 
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then (x, s) e A for each s E ( t , ,  t ,+  ~). This yields 

( [x~] tl(z))d(S,~-~12~) h(a) h(c) 
\ z  = [ys  -1 ]  d 

Just as before, this gives the p roof  of par t  (a) for t ~< t ,+  ~. By induction, we 
have the p roof  in case 1. 

Case 3. It  is analogous  to case 1, so we omit  it. 

Proof of Proposition 4. I. Case t = t*. Let us fix x < x*. (The case 
x > x* is completely  analogous.)  Again, since v ~ ~< ~[~-L]S~ ~#~ ~< v b, the 
same a rgument  used in Propos i t ion  3.5 of  ref. 4 and based on attractiveness 
and compactness ,  tells us it is enough to prove  that  for any y < x 

( E~] ) 
f ~ ~ ~7(z) d(S,.~-~tx~) = ( x -  y)a (4.4) lira ~0 z=Ey~ 1] 

We m a y  take t < t*, so that  x < x(s) for any s e [t, t*). Write the expression 

z =  l y e - l ]  

z =  l y e - l ]  

Avftt*If L(z~el]l]~(z))d(St.e-1#~)lds ( 4 . 5 )  

We have l i m ~ 0  v[z~-l]S,~-l#~= v a for any z<~x and sE(t, t*). Thus, just  
as in the previous proof,  when ~ tends to zero the first te rm on the rhs of 
(4.5) tends to ( x -  y)a, and the second te rm tends to zero. This proves the 
c a s e  t ~ g* .  

We have just  obta ined the macroscopic  behavior  at  t = t* and x # x*. 
It  is the same as if the start ing measure  were r ~x,~-~jv ~'b. In order to 

consider the case t > t*, we shall need something stronger  in this direction. 

Proposition 4.4.  Let/2~ be the coupling of p~ and r Ex,~ ~v a'b as 
defined by (4.1). Let (S,),~>o be the semigroup associated to the so-called 
basic coupling of two versions of our process. If  x # x * ,  then any weak 
limit point  fi of ~[~-1]S,.~-1~. satisfies #{(r/, 0): t / = 0 }  = 1. 

Notation. z~(q, O)(z, w) = (~l(z + x), fl(w + x)). ~ is defined accord- 
ingly for/2 on N Z x  N z. We say tha t /2  is t ranslat ion invariant  i f / 2 =  z~/2. 

For  the p roof  of  this proposi t ion  we need the following. 
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l . e m m a  4.5. There exists a coupling of the three processes 
(~/1,~)~>~o, (qz,),~o, and (r/3.,)~>o with initial measures v ~, v ~''b, and v b, 
respectively, and satisfying: for each/~ > 0, t ~> 0, we can find integers M, N 
so that 

P(th, , (x)  = t/l,,(x ) for all x ~< M) ~> 1 - /3  

P(rl2,t(x ) = r]3,t(x ) f o r  all x ~> N) ~> 1 - /~  

(4.6a) 

(4.6b) 

Proof. We couple the initial configurations in a natural way: take r/~ 
distributed as v~; add ~ particles at sites x>~0 in such a way that 
t/2 = deft h + ~ (coordinatewise) is distributed according to va'b; then add 
particles at negative sites so that t /3=t/2+ ( has distribution v b. The 
coupled evolution is analogous to Lemma 3.3 of ref. 4:r/1 particles have 
priority to jump, then ~ particles, and finally ~ particles at lower priority, 
at any given site. This is done in such a way that t/~,~, q2,,=r/t , ,+ ~,, and 
r/3,,=t12,,+~, have the right marginals. The generator of this coupled 
process acting on cylinder functions f gives 

/~f(~]l, ~, (~)= 2 b(i'~l(X), ~13(Y))p(x, y)[f(r/~ 'y, ~, c~)--f(rh, ~, ~)-[ 

+ Y~ [b(~(x), ~ ( y ) ) -  b(,7~(x), ~3(y))] 

• p(x ,  y)[-f(r/1 , ~x,),, ~-)--f(r/, ~, ~)] 

+ ~ Eb(~(x), ,73(y)) - b(,l~(x), ,13(y))3 

x p(x,  y ) [ f ( t h ,  ~, ~x,y) - f ( t / ,  ~, ~)] 

(where t/2 = r/1 + ~, r/3 = t/2 + ~). 
The probability on the lhs of (4.6a) can be bounded by P ( ~ t ( x ) >  0 for 

some x < M) and we can easily bound this because of the boundedness of 
b(.) and Zy~z  [YI P(Y)< +oo using suitable independent random walks 
for the ~ particles, as in Lemma 3.3 of ref. 4. Similarly for (4.6b). 

Proof  o f  Proposi t ion 4.4. Let us fix x < x* (the proof for x > x* is 
analogous). As in Lemma 1 of ref. 6, we shall prove that/2 is translation 
invariant and invariant under (S,),>~o so that /i({r/~>O}w {fi~>tl})=l 
(ref. 1, Section 5; ref. 7; and ref. 17, Chapter VIII). 

Since r~17 is a weak limit point of ~Ex,-I~S,.~ ,fit, in order to show that 
# = r~ 12, we first couple the process (r/l,, , F/l,,), (t/2,t, fi2,,) of initial distribu- 
tions/7~ and Zl/2~, respectively. Using this process, we obtain a coupling of 

and ~1/7, which we denote by (/~, ~i/~)- As usual we assume that the initial 
coupling distribution 2~ satisfies a relation similar to (4.1). 

822/63/3-4-20 
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By m o n o t o n i c i t y ,  (Ste-l.~s){./l < . /2}  = (Srs-l"~s){/,~l < 4 2 }  = 1 for any  t, 
s. Then, taking weak limits, 

By Theorem 3.3 and the case t = t *  of Proposi t ion 4.1, we have that  
all marginals are v a. It then follows that  (fi,%fi){./1 = 42} = 

(fi, r i f t ) {01=02}  = 1, and so f i=Zlf i .  
To  show that /i=o~,/7 for each t > 0 ,  we consider the process 

(./2,s, 02.s)~>o with g,/i~ as initial distribution, since S, fi is a weak limit of 
rtx~ l ?g , . ,<S , / i , .  Using Lemma4 .5  and the attractiveness, for any given 
f l > 0  we may couple (r/z.~, 0e.s) with (./3.,, 03.~) and (./4.s, 04.,) with initial 
laws ra4/i~ and r_~tfi~ for suitable M~> 1 in such a way that the initial 
coupling measure 2~ satisfies 

Using the translation invariance of fi and arguing as in its proof, we 

get fi = ,~,fi. 
Thus, we know that: (i) fi{(./, 0):~/~>0 or 0~>./} = 1; (ii) /2 is transla- 

tion invariant; (iii) both  marginals of fi are v a so that l imn~ +~ 1/n 
"Y~n=l 0 1 ( i ) - - 0 ( i ) ) = 0  fi-a.s.; (iv) {./>~0} and {0>/./} are both translation 
invariant. F rom this one gets that f i{ r /=0}  = 1 (this argument  is due to 
P. Ferrari ,  whom we thank for the discussion, and appears in Proposi-  
t ion 2.19 of Ref. 9). 

P r o o f  o f  P r o p o s i t i o n  4. 1. Case t > t*. Let us fix t > t*. By Proposi-  
t ion 4.4, for any x r x* 

g~O 

From this we easily see that  for any - m  < z < l < + o0 and any 8 > 0 

[le t] } 
~;~0 y=[Z8 1] 

: 0 (4.7) 

We first claim that  (4.7) is still true when we change t* by t. Indeed, 
suppose this were not  the case, so that we could take 6 > 0 and z < l such 
that 

f [ levi ] t 
e~O y=[ze l] 
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Since Zy lYJ P ( Y ) <  +o% a simple comparison with independent particles 
allows us to find k < + oo so that for any 1 > e > 0, with probability at least 
1-c~/2 no particle at the left of [ ( z - k ) e  -1] (right of [ ( l + k ) ~ - l ] )  at 
time t*e -1 went to the right of [ze -~] (left of [le ~] respectively) up to 
time te -1. But the coupled dynamics S~ cannot create discrepancies 
between r/(.) and fi(') and so we would have 

lim S,.+-~fi~ e ~ ~ (.(y)~O(y)) > ~5 > (5/2 
e ~ O  y = [ ( z - k ) e  1] 

contradicting (4.7), and proving the claim. 
~ ,  l i t  t ]  By Theorem 3.3, if z(t)  < z < l, then e ,,,y= cz~_l n O(Y) converges in 

probability to ( l - z ) b .  Combining this with the relation r~x~ q St~<#~ ~ v b 
and (4.7), with t in the place of t* we get that ~ E z ~ - q S t ~ < # ~ v  b if 
z > z ( t ) .  Similarly, this limit is v ~ if z < z ( t ) .  This completes the proof of 
Proposition 4.1. 

We need now to extend the result for any number of steps in the initial 
profile. This is the content of the next result. 

Proposition 4.6. Theorem 3.1 holds when Po is an increasing step 
function. 

Proof. We already know this for P0 a 1- or 2-step function. Let us 
assume the result is proven for Po increasing and a k-step function, with 
k ~< n. Now let us assume P0 is an increasing and (n + 1)-step function. The 
arguments used for t~< t* in Proposition 4.1 give us the result up to the 
time 7 of the first collision between discontinuity lines of p(.,-).  At this 
point it is easy to obtain an analogue of Proposition 4.4 by suitably 
coupling/~ and a measure fi~ whose profile is a k-step function, for k ~< n. 
After this we can easily conclude the proof, as in Proposition 4.1. 

5. C O N C L U D I N G  R E M A R K S  

Concerning decreasing initial profiles, the situation is much simpler, in 
agreement with the fact that the hydrodynamic equation will develop no 
shocks. When Po is strictly decreasing and continuous the preservation of 
local equilibrium has been proven in ref. 4 (Theorem 2.10). The technique 
used here (approximation by step initial profiles) easily yields the general 
decreasing case, and we can state the following result. 

Theorem 5.1. Let ~z~ be as in Theorem 3.1, where Po is now 
decreasing, bounded, and piecewise continuous. Under Assumptions 2.1' 
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and 2.3, and  requir ing h to be strictly concave we have that  (3.3) holds,  
where now p(x ,  t) is the unique classical solut ion of Eq. (3.2). 

Proof .  F o r  Po any decreas ing step function,  the p roo f  is very simple 
and based on the same a rguments  as in the case t < t* of P ropos i t i on  4.1. 
Indeed,  if Po is as in P ropos i t i on4 .1 ,  but  now O < ~ b < c < a ,  we can 
simply use ~E~ 11St~ lva'C and ~Ex~-I~_E~-~S~-~v "'b as upper  bounds  for 
rEx~_~lSt~_z#~. Apply ing  Theorem 3.3b, we get v pc~'~ as upper  b o u n d  for 
any possible  l imit  po in t  of ZEx~-,~S~-, l~ (e{0) .  Similar ly  for the lower 
bound.  The  reasoning  for the induc t ion  step is jus t  the same. This,  together  
with L e m m a  3.5, where e,,,/3~ can be taken  decreasing if P0 is so, al lows us 
to t rea t  the case of decreasing init ial  profiles. 

One na tu ra l  ques t ion  concerns  the extension of T he o re m 3.1 to Po not  
necessari ly monotonic .  W e  do no t  have a comple te  p roo f  of such a result, 
but  only par t ia l  answers for the Z R P  and  the SEP. (t~'~5) 

If one is not  asking a b o u t  local  equi l ibr ium,  but  only convergence 
of the densi ty  field, general  bounded ,  measurab le  init ial  profiles can be 
allowed. This has been recent ly s tudied in ref. 18. 
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